清洗 SiC 芯片時,清洗劑 pH 值超過 9 可能損傷表面金屬化層,具體取決于金屬化材料及暴露時間。SiC 芯片常用金屬化層為鈦(Ti)、鎳(Ni)、金(Au)等多層結構,其中鈦和鎳在堿性條件下穩(wěn)定性較差:pH>9 時,OH?會與鈦反應生成可溶性鈦酸鹽(如 Na?TiO?),導致鈦層溶解(腐蝕速率隨 pH 升高而加快,pH=10 時溶解率是 pH=8 時的 5 倍以上);鎳則會發(fā)生氧化反應(Ni + 2OH? → Ni (OH)? + 2e?),形成疏松的氫氧化鎳膜,破壞金屬化層連續(xù)性。金雖耐堿性較強,但高 pH 值(>11)會加速其底層鈦 / 鎳的腐蝕,導致金層剝離。實驗顯示:pH=9.5 的清洗劑處理 SiC 芯片 3 分鐘后,鈦層厚度減少 10%-15%,金屬化層導電性下降 8%-12%;若延長至 10 分鐘,可能出現(xiàn)局部露底(SiC 基底暴露)。因此,清洗 SiC 芯片的清洗劑 pH 值建議控制在 6.5-8.5,若需堿性條件,應限制 pH≤9 并縮短清洗時間(<2 分鐘),同時添加金屬緩蝕劑(如苯并三氮唑)降低腐蝕風險。高性價比 Micro LED 清洗劑,以更低成本實現(xiàn)更好品質清潔。江門什么是功率電子清洗劑銷售廠
普通電子清洗劑不能隨意替代功率電子清洗劑,兩者在配方和適用范圍上存在本質區(qū)別。配方上,普通電子清洗劑多以單一溶劑(如異丙醇、酒精)或低濃度表面活性劑為主,側重去除輕度灰塵、指紋等污染物,對高溫氧化層、焊錫膏殘留的溶解力弱;功率電子清洗劑則采用復配體系,含高效溶劑(如乙二醇丁醚)、螯合劑(如EDTA衍生物)和緩蝕劑,能針對性分解功率器件特有的高溫碳化助焊劑、硅脂油污,且對銅、鋁等金屬材質無腐蝕。適用范圍上,普通清洗劑適合清洗PCB板表面、連接器等低功率器件,而功率電子清洗劑專為IGBT、MOSFET等大功率器件設計,可應對其高密度引腳縫隙、散熱片凹槽內的頑固污染物,且能耐受功率器件清洗時的高溫(40-55℃)環(huán)境,避免因配方不穩(wěn)定導致清洗失效。若用普通清洗劑替代,易出現(xiàn)殘留去除不徹底、器件腐蝕等問題,影響功率電子設備的可靠性。環(huán)保功率電子清洗劑品牌對 IGBT 模塊的絕緣材料無損害,保障電氣絕緣性能。
超聲波清洗功率模塊時間超過 10 分鐘,是否導致焊點松動需結合功率密度、焊點狀態(tài)及清洗參數(shù)綜合判斷,并非肯定,但風險會明顯升高。超聲波清洗通過高頻振動(20-40kHz)產生空化效應去污,若功率密度過高(超過 0.1W/cm2),長時間振動會對焊點產生持續(xù)機械沖擊:對于虛焊、焊錫量不足或焊膏未完全固化的焊點,10 分鐘以上的振動易破壞焊錫與引腳 / 焊盤的結合界面,導致焊點開裂、引腳松動;即使是合格焊點,若清洗槽內工件擺放不當(如模塊與槽壁碰撞),或清洗劑液位過低(振動能量集中),也可能因局部振動強度過大引發(fā)焊點位移。此外,若清洗溫度超過 60℃,高溫會降低焊錫強度(如無鉛焊錫熔點約 217℃,60℃以上韌性下降),疊加長時間振動會進一步增加松動風險。正常工況下,功率模塊超聲波清洗建議控制在 3-8 分鐘,功率密度 0.05-0.08W/cm2,溫度 45-55℃,且清洗后需通過外觀檢查(放大鏡觀察焊點是否開裂)、導通測試(驗證引腳接觸電阻是否正常)排查隱患,若超過 10 分鐘,需逐點檢測焊點可靠性,避免后期模塊工作時出現(xiàn)接觸不良、發(fā)熱等問題。
清洗功率電子模塊的銅基層時,彩虹紋的出現(xiàn)多與氧化、清洗劑殘留或清洗工藝不當相關,需針對性規(guī)避。首先,控制清洗劑的酸堿度。銅在pH值過低(酸性過強)或過高(堿性過強)的環(huán)境中易發(fā)生氧化,形成彩色氧化膜。應選用pH值6.5-8.5的中性清洗劑,減少對銅表面的化學侵蝕,同時避免使用含鹵素、強氧化劑的配方,防止引發(fā)電化學腐蝕。其次,優(yōu)化清洗后的干燥工藝。若水分殘留,銅表面會因水膜厚度不均形成光的干涉條紋(彩虹紋)。清洗后需采用熱風烘干(溫度50-70℃),配合真空干燥或氮氣吹掃,確保銅基層表面快速、均勻干燥,避免水分滯留。此外,清洗后應及時進行防氧化處理??刹捎免g化劑(如苯并三氮唑)短時間浸泡,在銅表面形成保護膜,隔絕空氣與水分,從源頭阻止彩虹紋產生,同時不影響銅基層的導電性能。編輯分享推薦一些關于功率電子模塊銅基層清洗的資料功率電子模塊銅基層清洗后如何檢測是否有彩虹紋?彩虹紋對功率電子模塊的性能有哪些具體影響?高濃縮設計,用量少效果佳,性價比優(yōu)于同類產品。
功率電子清洗劑能否去除銅基板表面的有機硅殘留,取決于清洗劑的成分與有機硅的固化狀態(tài)。有機硅殘留多為硅氧烷聚合物,未完全固化時呈黏流態(tài),含氟表面活性劑或特定溶劑的水基清洗劑可通過乳化、滲透作用將其剝離;若經高溫固化形成交聯(lián)結構,普通清洗劑難以溶解,需選用含極性溶劑(如醇醚類)的復配型清洗劑,利用相似相溶原理破壞硅氧鍵,配合超聲波清洗的機械力增強去除效果。銅基板表面的有機硅殘留若長期附著,會影響散熱與焊接性能,質量功率電子清洗劑通過表面活性劑、螯合劑與助溶劑的協(xié)同作用,可有效分解有機硅聚合物,同時添加緩蝕劑保護銅基板不被腐蝕。實際應用中,需根據(jù)有機硅殘留的厚度與固化程度調整清洗參數(shù),確保在去除殘留的同時,不損傷銅基板的導電與散熱特性。經過嚴苛高低溫測試,功率電子清洗劑在極端環(huán)境下性能依舊穩(wěn)定可靠。環(huán)保功率電子清洗劑品牌
同等清潔效果下,我們的清洗劑價格更優(yōu),為您帶來超值體驗。江門什么是功率電子清洗劑銷售廠
清洗功率模塊的銅基層發(fā)黑可能是清洗劑酸性過強導致,但并非只有這個原因。酸性過強(pH<4)時,銅會與氫離子反應生成 Cu2?,進一步氧化形成黑色氧化銅(CuO)或堿式碳酸銅,尤其在清洗后未及時干燥時更易發(fā)生,此類發(fā)黑可通過酸洗后光亮劑處理恢復。但其他因素也可能導致發(fā)黑:如清洗劑含硫成分(硫脲、硫化物),會與銅反應生成黑色硫化銅(CuS),這種發(fā)黑附著力強,難以去除;若清洗后殘留的氯離子(Cl?)超標,銅在濕度較高環(huán)境中會形成氯化銅腐蝕產物,呈灰黑色且伴隨點蝕;此外,清洗劑中緩蝕劑失效(如苯并三氮唑耗盡),銅暴露在空氣中氧化也會發(fā)黑??赏ㄟ^檢測清洗劑 pH(若 < 4 則酸性過強嫌疑大)、測殘留離子(硫 / 氯超標提示其他原因)及發(fā)黑層成分分析(XPS 檢測 CuO 或 CuS 特征峰)來判斷具體誘因。江門什么是功率電子清洗劑銷售廠