Nanoscribe稱,QuantumX是世界上基于雙光子灰度光刻技術(two-photongrayscalelithography,2GL)的工業(yè)系統(tǒng),目前該技術正在申請專利。2GL將灰度光刻技術與Nanoscribe的雙光子聚合技術相結合,可生產(chǎn)折射和衍射微光學以及聚合物母版的原型。QuantumX的軟件能實時控制和監(jiān)控打印作業(yè),并通過交互式觸摸屏控制面板進行操作。為了更好地管理和安排用戶的項目,打印隊列支持連續(xù)執(zhí)行一系列打印作業(yè)。該軟件有程序向導,可在一開始就指導設計師和工程師完成打印作業(yè),并能夠接受任意光學設計的灰度圖像。例如,可接受高達32位分辨率的BMP、PNG或TIFF文件,以便使用Nanoscribe的QuantumX進行直接制造。在雙光子灰度光刻工藝中,激光功率調制和動態(tài)聚焦定位在高掃描速度下可實現(xiàn)同步進行,以便對每個掃描平面進行全體素大小控制。Nanoscribe稱,QuantumX在每個掃描區(qū)域內可產(chǎn)生簡單和復雜的光學形狀,具有可變的特征高度。離散和精確的步驟,以及本質上為準連續(xù)的形貌,可以在一個步驟中完成打印,而不需要多步光刻或多塊掩模制造。連接宏觀與微觀,微納 3D 打印讓精細結構從想象變?yōu)榭捎|摸的現(xiàn)實。楊浦區(qū)科研微納3D打印工藝
Nanoscribe的PhotonicProfessionalGT2提供世界上分辨率非常高的3D無掩模光刻技術,用于快速,精度非常高的微納加工,可以輕松3D微納光學制作??梢源钆洳煌幕?,包括玻璃,硅晶片,光子和微流控芯片等,也可以實現(xiàn)芯片和光纖上直接打印。我們的3D微納加工技術可以滿足您對于制作亞微米分辨率和毫米級尺寸的復雜微機械元件的要求。3D設計的多功能性對于制作復雜且響應迅速的高精度微型機械,傳感器和執(zhí)行器是至關重要的?;陔p光子聚合原理的激光直寫技術,可適用于您的任何新穎創(chuàng)意的快速原型制作;也適合科學家和工程師們在無需額外成本增加的前提下,實現(xiàn)不同參數(shù)的創(chuàng)新3D結構的制作。微米級增材制造能夠突破傳統(tǒng)微納光學設計的上限,借助Nanoscribe雙光子聚合技術的出色的性能,可以輕松實現(xiàn)球形,非球形,自由曲面或復雜3D微納光學元件制作,并具備出色的光學質量表面和形狀精度。普陀區(qū)芯片上微納3D打印激光直寫想深入了解微納3D打印?納糯三維科技為您答疑,速來咨詢解鎖無限可能。
Nanoscribe的PhotonicProfessionalGT2雙光子無掩模光刻系統(tǒng)的設計多功能性配合打印材料的多方面選擇性,可以實現(xiàn)微機械元件的制作,例如用光敏聚合物,納米顆粒復合物,或水凝膠打印的遠程操控可移動微型機器人,并可以選擇添加金屬涂層。此外,微納米器件也可以直接打印在不同的基材上,甚至可以直接打印于微機電系統(tǒng)(MEMS)。PhotonicProfessionalGT2系統(tǒng)可以實現(xiàn)精度上限的3D打印,突破了微納米制造的限制。該打印系統(tǒng)的易用性和靈活性的特點配以特別廣的打印材料選擇使其成為理想的實驗研究儀器和多用戶設施。
NanoscribeQuantumXalign作為前列的3D打印系統(tǒng)具備了A2PL®對準雙光子光刻技術,可實現(xiàn)在光纖和光子芯片上的納米級精確對準。全新灰度光刻3D打印技術3Dprintingby2GL®在實現(xiàn)優(yōu)異的打印質量同時兼顧打印速度,適用于微光學制造和光子封裝領域。3Dprintingby2GL®將Nanoscribe的灰度技術推向了三維層面。整個打印過程在最高速度掃描的同時實現(xiàn)實時動態(tài)調制激光功率。這使得聚合的體素得到精確尺寸調整,以完美匹配任何3D形狀的輪廓。在無需切片步驟,不產(chǎn)生形狀失真的要求下,您將獲得具有無瑕疵光學表面的任意3D打印設計的真實完美形狀。多材料微納打印推動柔性電子器件發(fā)展。
3D微納加工技術應用于材料工程領域。材料屬性可以通過成分和幾何設計來調整和定制。通過使用Nanoscribe的3D微納加工解決方案,可以實現(xiàn)具有特定光子,機械,生物或化學特性的創(chuàng)新超材料和仿生微結構。Nanoscribe的無掩模光刻系統(tǒng)在三維微納制造領域是一個不折不扣的多面手,由于其出色的通用性、與材料的普適性和便于操作的軟件工具,在科學和工業(yè)項目中備受青睞。這種可快速打印的微結構在科研、手板定制、模具制造和小批量生產(chǎn)中具有廣闊的應用前景。也就是說,在納米級、微米級以及中尺度結構上,可以直接生產(chǎn)用于工業(yè)批量生產(chǎn)的聚合物母版。借助Nanoscribe雙光子聚合技術特殊的高設計自由度和高精度特點,您可以制作具有微米級高精度機械元件和微機電系統(tǒng)。歡迎探索Nanoscribe針對快速原型設計和制造真正高精度的微納零件的3D微納加工解決方案。微納結構在組織工程中模擬天然細胞環(huán)境。楊浦區(qū)科研微納3D打印工藝
微納3D打印技術,將宏觀制造思維融入微觀世界,開啟精密制造新紀元。楊浦區(qū)科研微納3D打印工藝
Nanoscribe首屆線上用戶大會于九月順利召開,在微流控研究中,通常在針對微流控器件和芯片的快速成型制作中會結合不同制造方法。亞琛工業(yè)大學(RWTHUniversityofAachen)和不來梅大學(UniversityofBremen)的研究小組提出將三維結構的芯片結構打印到預制微納通道中。生命科學研究的驅動力是三維打印模擬人類細胞形狀和大小的支架,以推動細胞培養(yǎng)和組織工程學。丹麥技術大學(DTU)和德國于利希研究中心的研究團隊展示了他們的成就,并強調了光刻膠如IP-L780和Nanoscribe新型柔性打印材料IP-PDMS的重要性。在微納光學和光子學研究中,布魯塞爾自由大學的研究人員提出了用于光纖到光纖和光纖到芯片連接的錐形光纖和低損耗波導等解決方案。阿卜杜拉國王科技大學的研究團隊3D打印了一個超小型單纖光鑷,以實現(xiàn)集成微納光學系統(tǒng)。連接處理是光子集成研究的挑戰(zhàn)。正如明斯特大學(WWU)研究人員所示,Nanoscribe微納加工技術正在驅動研究用于集成納米多孔電路的混合接口方法。麻省理工學院(MIT)的科學家們正在使用Nanoscribe的2PP技術制造用于高密度集成光子學的光學自由形式耦合器。楊浦區(qū)科研微納3D打印工藝